Wildlife

Elevated wildlife-vehicle collision rates during the COVID-19 pandemic

Altogether, we found that, while traffic volume declined by> 7% during the pandemic year (with a maximum monthly decline of nearly 40%), the absolute number of annual WVCs was largely unchanged. This resulted in significant increases of> 8% in collision rates between vehicles and wildlife during the pandemic year, peaking at a> 27% nationwide increase in April 2020. Other studies from the first several months of the pandemic documented similar transient declines in the number of WVCs when the pandemic began which then reversed in many jurisdictions as the pandemic progressed and traffic rebounded26.27. We observed a similar pattern over the first five months of the pandemic at the national scale (Fig. 2): WVCs initially declined during the pandemic in step with declines in traffic volume, but then started to increase to baseline levels at a faster rate than traffic, possibly due to behavioral lags by wildlife following traffic-mediated increases in wildlife road use. Though based on coarse-scale data, our research aligns with assertions from studies during27 and prior to the pandemic3,15,16,28,29 that the relationship between traffic volume and WVCs is non-linear.

We postulate that the observed non-linear relationship between traffic volume and WVCs is the result of greater use of roads and roadsides by certain wildlife species, namely large mammals (Table S1), in response to decreasing traffic volume, as prior research has suggested3,14,15,16. This explanation is consistent with accounts of various wildlife species making increased use of human spaces during the pandemic17,20,21: with less cars on the roads, wildlife might be less deterred from roads by the noise and light pollution that accompany high traffic volumes9,10,11,20 and perceive roads as less risky, thereby increasing their willingness to attempt road crossings3,8,15,16. Beyond incidentally crossing roads while moving about the landscape8.9wildlife might be attracted to roads for travel, mates, or other resources8,10,11. Many animals are shown to utilize roads to move efficiently across the landscape11,12and roads and the surrounding areas are comparatively open, such that wildlife might select roads and roadsides for enhanced visibility to find mates, detect predators, or locate prey10,13. Roadsides can also provide foraging opportunities and essential nutrients for wildlife via abundant, high-quality early successional vegetation and high salt concentrations10,11. As such, decreased road traffic during the pandemic might have caused certain wildlife species to tolerate the risks associated with roads in order to access the benefits of roads and roadsides.

An alternative explanation for the observed increases in collision rates is that human driving behavior, rather than animal behavior, changed during the pandemic. With fewer cars on the road, people might drive faster35rendering it more difficult for both humans and wildlife to avoid collisions3. Preliminary studies from throughout the United States have indeed suggested changes to human driving behavior during the pandemic, with several jurisdictions reporting increased vehicle speeds35.36. Despite reported increases in vehicle speeds, however, the total number of vehicle collisions (the sum of both wildlife and non-wildlife collisions) mirrored trends in traffic volume and declined considerably during the pandemic37.38. Thus, because changes to human behavior appear to have had a minimal effect on vehicle collisions overall, it is unlikely that the observed changes in collision rates are due to increased vehicle speeds alone. Still, we cannot discount the possibility that changes to human driving behavior contributed to the patterns documented here, and future work should more explicitly test the relative effects of changes in traffic volume on both human driving behavior and wildlife space-use, as well as the resultant impacts on WVCs.

A greater understanding of human driving behavior would also help explain our findings regarding changes in traffic patterns during the pandemic. Nationwide, the severity of COVID-19 restrictions accounted for a large amount of the variation in changes in monthly traffic volume (R2= 0.968), but the severity of restrictions was less influential on changes in yearly traffic across states (Tables S3 and S4). Restrictions implemented throughout the pandemic were largely enacted for the purpose of minimizing travel, and other research has demonstrated that these restrictions were effective at reducing human mobility18.21. Our state-level findings, however, imply that it was not only the restrictions themselves that reduced travel, but possibly also the associated anxiety regarding the risk of contracting the SARS-CoV-2 virus, as has been suggested in other studies21,22,23,24; although we observed the largest declines in traffic volume early in the pandemic (Fig. 2A) when restrictions were most stringent (Fig. S2)21there was widespread anxiety about the risks posed by SARS-CoV-2 during this time22,23which likely motivated people to stay home independent of restrictions24. Indeed, anxiety and risk perception might explain the relationship between traffic volume and the other covariates in our top models (Table S4). Declines in traffic were greatest in the most densely populated states (Fig. 4A) and in states that had the highest and the lowest burdens disease (Fig. 4B). The risk of SARS-CoV-2 transmission is greater in more densely populated states due to the close proximity of and frequent interactions amongst people21. As such, people may have altered their road use more in densely populated states as compared to sparsely populated ones due to differing perceptions of disease transmission risk23—Although differences in infrastructure in relation to population density likely contributed to this pattern as well39. Similarly, declines in traffic volume in states with larger outbreaks of SARS-CoV-2 might have been driven by increases in the perceived risk of contracting the virus21.23. Alternatively, traffic reductions in states with low disease burdens might reflect increased compliance with stay-at-home orders, and therefore less opportunity for disease spread40.41; essentially, reductions in traffic volume might be the cause of locally low disease burdens therein, rather than a consequence. Altogether, we posit that the observed heterogeneity in traffic volume between states is, at least in part, attributed to differences in the perceived risk posed by the SARS-CoV-2 virus.

Regardless of the mechanisms underlying changes in traffic volume and WVCs, our observation that the annual number of WVCs was largely unchanged despite substantive declines in traffic volume has implications for mitigating WVCs going forward. Most directly, the lack of a directional change in WVCs suggests that road traffic levels in the United States are currently such that even large decreases in traffic volume would have minimal long-term effects on the absolute number of WVCs. As such, decreasing collisions by reducing traffic volume would require even larger and longer-lasting changes in traffic than those observed during the pandemic. Since such massive and sustained reductions in traffic are unlikely4,5,6, WVCs in the United States essentially represent a fixed cost as of now, both for human society and wildlife populations. As such, these transient decreases in traffic likely provided minimal reprieve to large mammals from collision-induced mortality, in contrast to speculation that changes in human mobility during the COVID-19 pandemic had substantial positive effects for wildlife populations by freeing wildlife from the pervasive direct and indirect effects of humans17,18,19,20,26,27,42.

Indeed, it is possible that short-term decreases in traffic volume might ultimately be harmful to those wildlife species that increased their road use. Although the increases in collision rates we observed at the beginning of the pandemic were rapid and corresponded to nationwide declines in traffic volume (see also26.27), collision rates remained elevated even as traffic approached baseline levels in July (Fig. 2B). If wildlife responses to changes in traffic are asymmetric (ie., increases in wildlife road use following declines in traffic occur more rapidly than decreases in wildlife road use in response to increased traffic), then short-term declines in traffic volume might lead to net increases in the number WVCs over longer timeframes, ultimately proving detrimental to certain wildlife populations1.3. Future work should evaluate the long-term effects of the pandemic on wildlife populations, specifically with regards to collision-induced mortality17,20,26,27,42.

Although the COVID-19 pandemic provided an opportunity to examine the short-term effects of transient decreases in traffic volume on WVCs, the longer-term effects of expanding human populations, greater road densities, and altogether higher traffic volumes on WVCs are less clear. Similar to the increases in wildlife road use in response to decreases in traffic volume theorized here, steady increases in traffic might reduce wildlife road use long-term3,14,15,16; since road traffic is indeed increasing through time4,5,6we might therefore see declines in WVCs as roads become more effective at repelling wildlife1,3,14. Although these reductions in vehicle-induced wildlife mortality are welcome, this would see roads increasingly serve as barriers to animal movement and gene flow43further fragmenting already disconnected wildlife populations8. Thus, policy makers and urban planners should invest in infrastructure such as overpasses, underpasses, and fencing that enables wildlife to cross high-traffic roads safely or directs wildlife towards low-risk areas8.9. Even substantive short-term declines in road traffic are not sufficient to mitigate wildlife-vehicle conflict on their own.

Leave a Comment