Physics

Polariton Bose – Einstein condensate from a bound state in the continuum

  • von Neumann, J. & Wigner, EP In The Collected Works of Eugene Paul Wigner (ed. Wightman, AS) 291–293 (Springer, 1993).

  • Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A. 323231–3242 (1985).

    CAS Article ADS Google Scholar

  • Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358565–567 (1992).

    CAS Article ADS Google Scholar

  • Hsu, CW, Zhen, B., Stone, AD, Joannopoulos, JD & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater 116048 (2016).

    CAS Article ADS Google Scholar

  • Zhen, B., Hsu, CW, Lu, L., Stone, AD & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113257401 (2014).

    Article ADS Google Scholar

  • Mermet-Lyaudoz, R. et al. Realization of bound state in the continuum induced by vertical symmetry breaking in photonic lattice. Preprint at https://arxiv.org/abs/1905.03868 (2019).

  • Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541196–199 (2017).

    CAS Article ADS Google Scholar

  • Kavokin, A., Baumberg, JJ, Malpuech, G. & Laussy, FP Microcavities 2nd edn (Oxford Science, 2008).

  • Kasprzak, J. et al. Bose – Einstein condensation of exciton polaritons. Nature 443409–414 (2006).

    CAS Article ADS Google Scholar

  • Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose – Einstein condensation of microcavity polaritons in a trap. Science 3161007–1010 (2007).

    CAS Article ADS Google Scholar

  • Dusel, M. et al. Room temperature organic exciton – polariton condensate in a lattice. Nat. Commun. 112863 (2020).

    CAS Article ADS Google Scholar

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5805–810 (2009).

    CAS Article Google Scholar

  • Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13837–841 (2017).

    CAS Article Google Scholar

  • Lagoudakis, KG et al. Quantized vortices in an exciton – polariton condensate. Nat. Phys. 4706–710 (2008).

    CAS Article Google Scholar

  • Lagoudakis, KG et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326974–976 (2009).

    CAS Article ADS Google Scholar

  • Sanvitto, D. et al. Persistent currents and quantized vortices in a superfluid polariton. Nat. Phys. 6527–533 (2010).

    CAS Article Google Scholar

  • Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 3321167–1170 (2011).

    CAS Article ADS Google Scholar

  • Walker, PM et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119097403 (2017).

    CAS Article ADS Google Scholar

  • Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370600–604 (2020).

    MathSciNet CAS Article Google Scholar

  • Walker, PM et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102012109 (2013).

    Article ADS Google Scholar

  • Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93195151 (2016).

    Article ADS Google Scholar

  • Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4eaat8880 (2018).

    CAS Article ADS Google Scholar

  • Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121227402 (2018).

    CAS Article ADS Google Scholar

  • Suàrez-Forero, DG et al. Enhancement of parametric effects in polariton waveguides induced by dipolar interactions. Phys. Rev. Lett. 126137401 (2021).

    Article ADS Google Scholar

  • Turnbull, GA, Andrew, P., Jory, MJ, Barnes, WL & Samuel, IDW Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64125122 (2001).

    Article ADS Google Scholar

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 151061–1073 (2016).

    CAS Article ADS Google Scholar

  • Doeleman, HM, Monticone, F., den Hollander, W., Alù, A. & Koenderink, AF Experimental observation of a vortex polarization at an optical bound state in the continuum. Nat. Photon. 12397–401 (2018).

    CAS Article ADS Google Scholar

  • Gerace, D. & Andreani, LC Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. Phys. Rev. E. 69056603 (2004).

    Article ADS Google Scholar

  • Koshelev, KL, Sychev, SK, Sadrieva, ZF, Bogdanov, AA & Iorsh, IV Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B. 98161113 (2018).

    CAS Article ADS Google Scholar

  • Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light 956 (2020).

    CAS Article Google Scholar

  • Lu, L. et al. Engineering a light – matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points. Photon. Res. 8A91 – A100 (2020).

    CAS Article Google Scholar

  • Zhang, Y. et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 120186103 (2018).

    CAS Article ADS Google Scholar

  • Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9713 (2018).

    Article ADS Google Scholar

  • Dang, NHM et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 202113–2119 (2020).

    CAS Article ADS Google Scholar

  • Chen, Y. et al. Metasurface integrated monolayer exciton polariton. Nano Lett. 205292–5300 (2020).

    CAS Article ADS Google Scholar

  • Sanvitto, D. et al. Rapid radiative decay of charged excitons. Phys. Rev. B 62R13294 – R13297 (2000).

    CAS Article ADS Google Scholar

    Leave a Comment