Rao, SSP et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 1591665–1680 (2014).
Dixon, JR et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485376–380 (2012).
Nora, EP et al. Spatial partitioning of the regulatory landscape of the X-inactivation center. Nature 485381–385 (2012).
van Steensel, B. & Furlong, EEM The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20327–337 (2019).
Kosak, ST et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296158–162 (2002).
Dixon, JR et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518331–336 (2015).
Amat, R. et al. Rapid reversible changes in compartments and local chromatin organization revealed by hyperosmotic shock. Genome Res. 2918–28 (2019).
Sima, J. et al. Identifying cis elements for spatiotemporal control of mammalian DNA replication. Cell 176816–830.e18 (2019).
Alipour, E. & Marko, JF Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 4011202–11212 (2012).
Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, LA Emerging evidence of chromosome folding by loop extrusion. Cold Spring Harb. Symp. Quant. Biol. 8245–55 (2017).
Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 152038–2049 (2016).
Sanborn, AL et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112E6456 – E6465 (2015).
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 2951306–1311 (2002).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326289–293 (2009).
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78554–565.e7 (2020).
Zhou, J. & Troyanskaya, OG Predicting effects of noncoding variants with deep learning – based sequence model. Nat. Methods 12931–934 (2015).
Alipanahi, B., Delong, A., Weirauch, MT & Frey, BJ Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33831–838 (2015).
Kelley, DR, Snoek, J. & Rinn, JL Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. https://doi.org/10.1101/gr.200535.115 (2016).
Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. genes. https://doi.org/10.1038/s41588-018-0160-6 (2018).
Kelley, DR et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28739–750 (2018).
Chen, KM, Cofer, EM, Zhou, J. & Troyanskaya, OG Selene: a PyTorch-based deep learning library for sequence data. Nat. Methods. https://doi.org/10.1038/s41592-019-0360-8 (2019).
Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat. Genet. 53354–366 (2021).
Fudenberg, G., Kelley, DR & Pollard, KS Predicting 3D genome folding from DNA sequence with Akita. Nat. Methods 171111–1117 (2020).
Schwessinger, R. et al. DeepC: predicting 3D genome folding using megabase-scale transfer learning. Nat. Methods 171118–1124 (2020).
Durand, NC et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 399–101 (2016).
Abdennur, N. & Mirny, LA Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36311–316 (2020).
Chiang, C. et al. The impact of structural variation on human gene expression. Nat. genes. https://doi.org/10.1038/ng.3834 (2017).
Zhang, D. et al. Alteration of genome folding via contact domain boundary insertion. Nat. Genet. 521076–1087 (2020).
Suzukawa, K. et al. Identification of a breakpoint cluster region 3 ′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv (3) (q21q26). Blood. 842681–2688 (1994).
Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157369–381 (2014).
Lupiáñez, DG et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 1611012–1025 (2015).
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538265–269 (2016).
Croft, B. et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat. Commun. 95319 (2018).
Young, RA Control of the embryonic stem cell state. Cell 144940–954 (2011).
Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 681067–1082.e12 (2017).
Rao, SSP et al. Cohesin loss eliminates all loop domains. Cell. https://doi.org/10.1016/j.cell.2017.09.026 (2017).
Belaghzal, H. et al. Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat. genes. https://doi.org/10.1038/s41588-021-00784-4 (2021).
Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A / T-rich sequence. Genome Res. 23270–280 (2013).
Miga, KH et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 58579–84 (2020).
Logsdon, GA, Vollger, MR & Eichler, EE Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21597–614 (2020).
Vierstra, J. et al. Global reference mapping of human transcription factor footprints. Nature 583729–736 (2020).
Chen, KM, Wong, AK, Troyanskaya, OG & Zhou, J. A sequence-based global map of regulatory activity for deciphering human genetics. Preprint at bioRxiv. https://doi.org/10.1101/2021.07.29.454384 (2021).
Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9999–1003 (2012).
Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. & Wilson, AG Averaging weights leads to wider optima and better generalization. Preprint at https://arxiv.org/abs/1803.05407 (2018).
Chen, T., Xu, B., Zhang, C. & Guestrin, C. Training deep nets with sublinear memory cost. Preprint at https://arxiv.org/abs/1604.06174 (2016).
Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46D1284 (2018).
Boix, CA, James, BT, Park, YP, Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590300–307 (2021).